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Abstract

In this letter, we propose an end-to-end inverse modeling and optimization

method for microwave filter designs based on the data-augmentation learning

strategy. Because of the non-uniqueness of solutions, it is difficult to achieve

good convergence with artificial neural networks for inverse designs when the

parameter space is very large. We prove that the accuracy of inverse predic-

tions can be significantly improved using the network's self-generated data

and the optimization can be greatly accelerated with the help of the inverse

network. The predicted structural parameters can be used as initial values for

optimization, which reduces the number of iterations and avoids falling into

local optima. This method is applied to designs of fourth-order interdigital cav-

ity filters. The measurement and simulation agree well.
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1 | INTRODUCTION

The designs of most passive microwave components,
such as splitters, filters, and antennas, usually involve
physical structures and corresponding electromagnetic
(EM) responses. To design a filter with desired EM
responses, structural parameter sweeps in full-wave EM
simulations are essential, but these are time-consuming
and labor-intensive. In recent years, with the improve-
ment of computing power and the development of artifi-
cial intelligence, more and more work has applied neural
networks to the design of microwave filters.1,2 Due to
their excellent generalization ability when characterizing
non-linear and non-analytic relations, artificial neural
networks (ANNs) have been used as the surrogate model
and are much faster than EM simulations. When com-
bined with optimization algorithms, the surrogate model

can be regarded as the forward process from physical
structures to EM responses.3–7 In this process, sufficient
iterations are necessary to ensure convergence and it is
limited by the initial values and optimization time. The
forward surrogate model has been used to generate data
in the design of shunt switches,8 where generated data
can only be used for the design of one structural parame-
ter at the resonant frequency. Different from the forward
process, the inverse design can directly obtain the struc-
tural parameters from the design specifications without
iterations or prior knowledge.9–12 However, one type of
EM response may correspond to many groups of filter
structural parameters,13 which makes it difficult for the
algorithm to converge. Therefore, it easily falls into poor
local optima, especially when the parameter space is very
large. The multivalued neural network has been pro-
posed to handle this non-uniqueness problem,14 as they
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can get multiple prediction values from one inverse
model. However, large data sets lead to increased run-
times. Regularized deep belief network has been used to
extract microwave filter coupling matrices from given
S-parameters.10 In this case, the coupling coefficients
need to be converted to structure parameters for manu-
facture, which undermines this method's efficiency.

In this letter, we propose a data-augmentation learn-
ing strategy for filter designs that can effectively improve
the accuracy of inverse designs when the structural
parameter space is large. We use deep learning in an end-
to-end manner to establish links between physical struc-
tures and EM responses. The well-trained forward net-
work is not only a surrogate model but also a data
generator that produces more data for the inverse net-
work to learn. This architecture, which uses the data gen-
erated from the forward network to train the inverse
network, can be called a data-augmentation learning
strategy since it can improve the accuracy of inverse pre-
dictions. The performance of the inverse network suffers
from non-uniqueness problems.14 Thus, it is difficult to
build a completely accurate inverse model. An optimiza-
tion is added when inverse predictions cannot perfectly
meet the requirements. Different from previous works,3,4

the inverse model's predictions are used as initial values
that can reduce the likelihood of falling into local
optima.9 We also simplify the objective function so that
the target focuses on a few key points, which further
improves the optimization speed.

2 | PROPOSED MODELS AND
ALGORITHM

An ANN is built for forward predictions. The structural
parameters x1, x2, …, xn and frequency xf are input to the
network. To uniformize the parameters' scales, data nor-
malization is first performed as

xinputm ¼ xm� xmin
m

xmax
m �xmin

m
m¼ 1, 2,…,n, fð Þ ð1Þ

where all the input data are scaled to a range between
0 and 1. The output layer is the magnitude of S11 which
is represented as yl

yl ¼φ
XN
n¼1

ωl
ny

l�1
n þbl

 !
ð2Þ

where N is the total number of neurons in layer l � 1. ω
and b are the weights and bias, respectively. φ(x) is the

LeakyReLU activation function defined as bellow and
α is set to 0.3.

φ xð Þ¼ x, if x >0

αx, if x ≤ 0

�
ð3Þ

The relationship between the physical structure and
EM responses is complicated and it can be represented
effectively by deep neural networks.15,16 The trained for-
ward network can accurately predict the EM responses,
which ensures the accuracy of generated data.

Because different combinations of structural parame-
ters may produce similar EM responses, training the
inverse network usually does not result in effective con-
vergence. Here, we propose the data-augmentation learn-
ing strategy, as shown in Figure 1A. The normalized data
are used for the forward network training. After proper
weight initialization and the adjustment of other hyper-
parameters, the well-trained forward network can pro-
vide quite accurate EM predictions when compared to
simulations. In order to get more data sets, a randomly
generated set of structural parameters is firstly input to
the trained forward model. The corresponding EM
response is then predicted from the structural parame-
ters. This process will be repeated until all the generated
data is obtained. Finally, the random structural parame-
ters and predicted EM responses are merged into gener-
ated datasets, which can be used together with the
simulated datasets for inverse network training. Most
importantly, the time needed to generate the data is neg-
ligible when compared with simulations, which can be
considered a data augmentation method.

The existence of non-unique solutions is the essential
feature of inverse problems, and it will not change in the
process of simulation or neural networks. Data sets aug-
mentation does not fundamentally solve the non-unique
solution problem, but it provides enough data for the
neural network to learn and improves the accuracy of
inverse predictions. A neural network with strong gener-
alization ability should learn as much as possible the fea-
tures of the given data and infer equally well on the new
data. But there is a premise: the data sets should reflect
the probability distribution of the problem's solutions.
Therefore, data augmentation is a good way to enrich the
features in data sets while maintaining the time required
to collect them. Model performance of neural networks
improves with the amount of training data.17 The for-
ward model provides more training data for the inverse
network training, which results in its effective
convergence.

For the fabrication of filters, structural parameters
and the corresponding EM responses are the most
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important concerns. Transfer functions and coupling
matrices are intermediate products of the design process,
thus additional conversion and data processing for the
coupling matrices are needed to complete the filter
design.18 The proposed algorithm is shown in Figure 1B,
which is carried out in an end-to-end manner mapping
the desired S-parameters to the corresponding physical
structures directly. Since transfer functions and coupling
matrices are not considered, the proposed end-to-end
algorithm can also be employed in other device designs
like antennas. The desired S11 curve is generated by
Chebyshev polynomial. After data-augmentation train-
ing, the inverse model generates structure parameters
from the required S11 target. Then the forward model
outputs the predicted S11 values corresponding to the
inverse predictions. If the predicted S11 values meet the
design requirements, the structure parameters of the
inverse design are output directly. Otherwise, the results
of the inverse design will be used as the initial values for
the genetic algorithm (GA), and the iterative optimiza-
tion will be carried out together with the forward model
until the requirements are met.

For cavity filters, both the height of the cavity and the
length of the resonance rod affect the resonant frequency.
Furthermore, different combinations of structural param-
eters may correspond to very similar EM responses,
which will inevitably lead to unpredictable local optima,
especially when the solution space is very large. The opti-
mization algorithm depends on the initial values and it
will find the optimal solution near them. Choosing good
initial values will speed up the convergence and avoid
falling into a poor local optimal solution. Compared with
using theoretical calculations to obtain the initial values
of the filter structure,18 the neural network only pays
attention to the data itself, which can be easily extended
to the design of other devices. The data-augmentation
learning strategy can make fairly accurate predictions for
structural parameters and those can be used as initial
values for optimization, which significantly reduces the

size of solution space and the number of required
iterations.

A good trade-off between the forward design and
inverse design has been completed in our proposed algo-
rithm. The inverse design is less stable because of non-
uniqueness problems, but it is very fast. The forward
process is limited by the initial structure and multiple
iterations are required, but it is stable. It is better to get
the design results stably and quickly while maintaining
the time cost for collecting data sets.

3 | PERFORMANCE OF THE
ALGORITHM

The fourth-order interdigital cavity filter is used as an
example; its geometry is shown in Figure 2A. The design
variables are X = [L1, L2, d12, d23] where [L1, L2] are the
lengths of the resonant units and [d12, d23] are the dis-
tances between two adjacent units. The frequency range
is set to 0.5–4.5 GHz. Nine hundred data samples are sim-
ulated and each one contains the structure parameters
and S11 values. Eight hundred simulated samples are
used for building models' training sets, while 100 are
used for building testing sets. For one data set of the for-
ward model, the inputs are the normalized structural
parameters and one normalized frequency value while
the output is the unnormalized S11 value at this fre-
quency. The range of designed parameters space is illus-
trated in Table 1. The relative range is defined as 2
(XMax � XMin)/(XMax + XMin) which indicates the size of
the parameter space.

The feature extraction capability of a neural network
increases with the number of layers, but too many hidden
layers can lead to overfitting. After parameters adjust-
ment, the chosen fully connected network (FCN) has
24 hidden layers. The number of input layer neurons,
hidden layer neurons, and output layer neurons are 5, 80,
and 1 respectively. The information of other parameters

(A) (B)

FIGURE 1 (A) Flowchart of the

proposed data-augmentation learning

strategy. (B) Architecture of the

proposed algorithm
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in the network is listed in Table 3. After training the for-
ward network, the simulation results and predictions are
almost the same as shown in Figure 2B. The mean abso-
lute error of the S11-parameters at each frequency point
is 0.48 dB while experimenting on 100 random structure
combinations that are not included in the data sets.

Inverse problems are usually more difficult to solve
than forward ones because of non-uniqueness. The
inverse model is the modeling of the inverse problem,
and the complexity of the problem itself leads to the dif-
ficulty of modeling. Therefore, the inverse model
requires more trainable parameters than the forward
surrogate model, which indicates more data sets are
indispensable.

The well-trained forward network can be used as a
data generator to produce 3600 samples. The time needed
to generate one result is 0.23 s, which is much faster than
EM simulation as shown in Table 2. Then, the generated
data and simulated data are input into the inverse net-
work for training. The inverse model's architecture is also
an FCN with 12 hidden layers. The number of neurons in
each hidden layer is 140. For one data set of the inverse
model, the inputs are S11 values at 251 frequency points,
and the output is structure parameters which are also
scaled to a range between 0 and 1. The loss function is set
to mean squared error. To avoid overfitting, the value of
dropout in each hidden layer is set to 0.07. As shown in
Table 3, the testing loss is much smaller than that of the
network trained on simulated data only, which indicates
the accuracy of inverse predictions have been improved

greatly. In Figure 3A, the inverse predictions based on
the mixed data sets are more accurate than those based
on the simulated data sets. Especially for example 1, the
new prediction, which is obtained in less than 1 s, exactly
matches the target without any optimizations. Although
the inverse prediction in example 2 does not fully meet
the target, it is much better than the prediction based on
simulation data.

With the help of data augmentation, the accuracy of
inverse predictions has been significantly improved.
Although the inverse predictions cannot be completely
accurate in all situations, more accurate inverse predic-
tions will speed up the optimization. As the example 2 in
Figure 3A, the inverse predictions based on the models
trained on simulated data sets and mixed data sets are
[L1, L2, d12, d23] = [17.598, 15.672, 2.650, 3.757] mm and
[L1, L2, d12, d23] = [21.095, 18.913, 2.515, 3.804] mm. By
taking these two sets of structural parameters as initial
values, the final optimization results can be obtained as
[L1, L2, d12, d23] = [17.121, 16.224, 1.944, 3.509] mm and
[L1, L2, d12, d23] = [20.810, 18.792, 2.271, 3.434] mm
respectively. As shown in Figure 3B, the optimization
result based on the mixed data sets has realized the tar-
get. The size of the population in the GA and the number
of iterations in optimization 1 and optimization 2 are
20, 15, and 60, 60 respectively. If initial values are not
accurate enough, it is difficult to converge in a short time
since the optimization algorithm iterates around the ini-
tial values.

There is another example to illustrate the details of
the optimization. For the design of the fourth-order inter-
digital cavity filter, the specification of the design goal is |
S11| < �24 dB in 2.15–3.15 GHz. The predicted structure
parameters are [L1, L2, d12, d23] = [23.91, 21.917, 2.405,
3.582] mm and the corresponding S11 curve is shown in
Figure 4A. Although the return loss of the inverse predic-
tion curve meets expectations, the bandwidth is not wide
enough. Finding the optimal structural parameters in a

L1

L1

L2

L2

d12

d12
d23

(B)(A)

FIGURE 2 (A) Geometry of a

fourth-order interdigital cavity filter.

(B) Comparisons of forward predictions

and electromagnetic (EM) simulations

TABLE 1 Space range of structure parameters in millimeters

Structure parameters L1 L2 d12 d23

Max 48 48.5 3.2 4.7

Min 18 15.5 2 3.2

Relative range 90% 103% 46% 38%

4 of 8 HUANG ET AL.
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wide range requires considerable time and the result eas-
ily falls into poor local optima. The inverse predictions
can be used as initial values for optimization, which
greatly reduces the size of solution space. The new
parameter space is centered on the inverse predictions,

and the upper and lower bounds of L1, L2, d12, and d23
are [±0.6, ±0.6, ±0.3, ±0.3] mm respectively. The corre-
sponding relative ranges are 5%, 5.5%, 25%, and 17% for
L1, L2, d12, and d23 which are significantly smaller than
the values in Table 1.

TABLE 2 Comparison of samples'

simulation and generation
Number of samples Time for one sample Time for total samples

Simulation 900 8.5 s 2.2 h

Generation 3600 0.23 s 13.8 min

TABLE 3 Parameters comparison of different models

Data sets

No. of
hidden
layers

No. of
neurons in
each hidden
layer Dropout Loss function

Training
loss

Testing
loss

Forward
model

900 (simulated) 24 80 0.3 Mean square
error

0.68 0.80

Inverse
model Aa

900 (simulated) 9 140 0 0.0089 0.0103

Inverse
model Ba

900 (simulated) + 3600
(generated)

12 140 0.07 7.18e-4 8.19e-4

aInverse model A is trained on simulated data sets and inverse model B is trained on mixed data sets.

FIGURE 3 (A) Inverse predictions

based on mixed data (red curves) and

simulated data (green curves). Three

curves on the left are example 1 and the

right ones are example 2. (B) The

comparison of the target and

optimization results. Optimization 1 is

based on the inverse model trained on

mixed data sets and Optimization 2 is

based on the inverse model trained on

simulated data sets

FIGURE 4 (A) Comparison of the

inverse prediction and target.

(B) Comparisons of optimization results

and target. Optimization 1 uses inverse

predictions as initial values, while

Optimization 2 uses the random number

as initial values
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Some key points are selected to simplify the objective
function in the optimization. As shown in Figure 4B,
seven key points are marked on the target curve and the
objective function is constructed as

F¼

1
7

X4
n¼1

Starn �Spren

�� ��þ
X3
m¼1

Starm �Sprem

�� ��
 !

, if Sprem > Starm m¼ 1, 2, 3ð Þ

1
7

X4
n¼1

Starn �Spren

�� ��
 !

, if Sprem ≤ Starm m¼ 1, 2, 3ð Þ

8>>>>><
>>>>>:

ð4Þ

where Sn and Sm are the minima and maxima of S11
values within the passband. Star and Spre are the values on
the target curve and the predicted one. The objective func-
tion is expressed as the mean absolute error for upper
points if prediction values from the forward model are
higher than the target. Otherwise, it will be set to 0. In this
way, the optimization speed can be improved to 30 times
when compared with the optimization containing all
251 frequency points. Finally, the specification is realized
in 35 s, as shown in Figure 4B. The curves of optimization
1 and optimization 2 are based on the same forward
model. The difference is that optimization 1 uses the
inverse prediction as initial values, and the initial values of
optimization 2 are randomly selected in the space of struc-
ture parameters. The optimization result with inverse

predictions as initial values fits well with the lower points
and the values of the curve are all smaller than the target
in the passband. The optimized structural parameters are
[L1, L2, d12, d23] = [24.23, 22.18, 2.232, 3.349] mm which
are very close to inverse predictions and the deviations are
1.3%, 1.2%, �7.2%, and �6.5%. It is also worth noting that
optimization 1 and optimization 2 use the same size of
population (20) in the GA, but the number of iterations
used for optimization 1 and optimization 2 is 15 and
100 respectively. It means that the optimization can be
quickly converged with the help of the inverse network.

The algorithm we proposed is robust and applicable
to other relatively high- or low-frequency bandpass filter
designs. As shown in Figure 5A, both design results meet
the requirements for the bandwidth and return loss. The
fabricated filter prototype is measured using a vector net-
work analyzer, shown in Figure 5B, which indicates the
proposed method is valid.

As shown in Table 4, ANN and homotopy optimiza-
tion have been used for waveguide bandpass filter
designs and the forward model is just corresponding to
sub-structures,3 which is only suitable for filters cascaded
by single cavities. Multiphysics optimization technique
incorporating ANNs and trust-region algorithm has been
developed and the forward model requires additional
non-geometric parameters as input such as electric
potential.4 The input of our proposed method is only

(B)(A)

FIGURE 5 (A) Illustration of more

results. The two curves on the left are

example 1 and the right ones are

example 2. (B) Comparisons of the

target, optimization result and

measurement

TABLE 4 Comparisons of ANN-assisted filter designs between recent works and the proposed method

Methods Initial values No. of Iterations Completion time

Zhao and Wu3 ANN and homotopy optimization Filter designer 11 8.3 min

Zhang et al.4 ANN and multiphysics optimization Filter designer 7 5.8 min

This work Inverse design — — 0.4 sa

ANN and GA optimization Random 100 4 minb

ANN and GA optimization Inverse predictions 15 35 s

Abbreviation: ANN, artificial neural network.
aThe specifications are accomplished under the inverse design.
bDesign specifications are not accomplished in this time.

6 of 8 HUANG ET AL.
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structural parameters that can be easily extended to other
designs of microwave devices. The completion time in
the table refers to the optimization time after the model
is trained. Through the comparison with the case using
random initial values, the optimization can be quickly
converged with the help of the inverse network.

4 | CONCLUSION

We have presented an end-to-end inverse modeling and opti-
mization method for microwave filter designs based on the
ANN. The data-augmentation learning strategy has been
proposed to improve the precision of filter inverse designs
when the parameters space is large. The great amount of
data generated from the forward model saves time for col-
lecting data sets, and the inverse predictions become more
accurate because of the sufficient data. The predicted struc-
ture parameters of the inverse network provide the initial
values, which greatly accelerates the optimization. The appli-
cations on fourth-order interdigital cavity filter designs show
the proposed method is valid over a wide frequency range. It
is worth noting that the number of data sets used for training
the forward model is slightly larger and better network archi-
tecture with fewer data sets is worth exploring.
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